Module TeachMyAgent.students.openai_baselines.common.mpi_util

Expand source code
from collections import defaultdict
import os, numpy as np
import platform
import shutil
import subprocess
import warnings
import sys

try:
    from mpi4py import MPI
except ImportError:
    MPI = None


def sync_from_root(sess, variables, comm=None):
    """
    Send the root node's parameters to every worker.
    Arguments:
      sess: the TensorFlow session.
      variables: all parameter variables including optimizer's
    """
    if comm is None: comm = MPI.COMM_WORLD
    import tensorflow as tf
    values = comm.bcast(sess.run(variables))
    sess.run([tf.assign(var, val)
        for (var, val) in zip(variables, values)])

def gpu_count():
    """
    Count the GPUs on this machine.
    """
    if shutil.which('nvidia-smi') is None:
        return 0
    output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv'])
    return max(0, len(output.split(b'\n')) - 2)

def setup_mpi_gpus():
    """
    Set CUDA_VISIBLE_DEVICES to MPI rank if not already set
    """
    if 'CUDA_VISIBLE_DEVICES' not in os.environ:
        if sys.platform == 'darwin': # This Assumes if you're on OSX you're just
            ids = []                 # doing a smoke test and don't want GPUs
        else:
            lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD)
            ids = [lrank]
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))

def get_local_rank_size(comm):
    """
    Returns the rank of each process on its machine
    The processes on a given machine will be assigned ranks
        0, 1, 2, ..., N-1,
    where N is the number of processes on this machine.

    Useful if you want to assign one gpu per machine
    """
    this_node = platform.node()
    ranks_nodes = comm.allgather((comm.Get_rank(), this_node))
    node2rankssofar = defaultdict(int)
    local_rank = None
    for (rank, node) in ranks_nodes:
        if rank == comm.Get_rank():
            local_rank = node2rankssofar[node]
        node2rankssofar[node] += 1
    assert local_rank is not None
    return local_rank, node2rankssofar[this_node]

def share_file(comm, path):
    """
    Copies the file from rank 0 to all other ranks
    Puts it in the same place on all machines
    """
    localrank, _ = get_local_rank_size(comm)
    if comm.Get_rank() == 0:
        with open(path, 'rb') as fh:
            data = fh.read()
        comm.bcast(data)
    else:
        data = comm.bcast(None)
        if localrank == 0:
            os.makedirs(os.path.dirname(path), exist_ok=True)
            with open(path, 'wb') as fh:
                fh.write(data)
    comm.Barrier()

def dict_gather(comm, d, op='mean', assert_all_have_data=True):
    """
    Perform a reduction operation over dicts
    """
    if comm is None: return d
    alldicts = comm.allgather(d)
    size = comm.size
    k2li = defaultdict(list)
    for d in alldicts:
        for (k,v) in d.items():
            k2li[k].append(v)
    result = {}
    for (k,li) in k2li.items():
        if assert_all_have_data:
            assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k)
        if op=='mean':
            result[k] = np.mean(li, axis=0)
        elif op=='sum':
            result[k] = np.sum(li, axis=0)
        else:
            assert 0, op
    return result

def mpi_weighted_mean(comm, local_name2valcount):
    """
    Perform a weighted average over dicts that are each on a different node
    Input: local_name2valcount: dict mapping key -> (value, count)
    Returns: key -> mean
    """
    all_name2valcount = comm.gather(local_name2valcount)
    if comm.rank == 0:
        name2sum = defaultdict(float)
        name2count = defaultdict(float)
        for n2vc in all_name2valcount:
            for (name, (val, count)) in n2vc.items():
                try:
                    val = float(val)
                except ValueError:
                    if comm.rank == 0:
                        warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val))
                else:
                    name2sum[name] += val * count
                    name2count[name] += count
        return {name : name2sum[name] / name2count[name] for name in name2sum}
    else:
        return {}

Functions

def dict_gather(comm, d, op='mean', assert_all_have_data=True)

Perform a reduction operation over dicts

Expand source code
def dict_gather(comm, d, op='mean', assert_all_have_data=True):
    """
    Perform a reduction operation over dicts
    """
    if comm is None: return d
    alldicts = comm.allgather(d)
    size = comm.size
    k2li = defaultdict(list)
    for d in alldicts:
        for (k,v) in d.items():
            k2li[k].append(v)
    result = {}
    for (k,li) in k2li.items():
        if assert_all_have_data:
            assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k)
        if op=='mean':
            result[k] = np.mean(li, axis=0)
        elif op=='sum':
            result[k] = np.sum(li, axis=0)
        else:
            assert 0, op
    return result
def get_local_rank_size(comm)

Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, …, N-1, where N is the number of processes on this machine.

Useful if you want to assign one gpu per machine

Expand source code
def get_local_rank_size(comm):
    """
    Returns the rank of each process on its machine
    The processes on a given machine will be assigned ranks
        0, 1, 2, ..., N-1,
    where N is the number of processes on this machine.

    Useful if you want to assign one gpu per machine
    """
    this_node = platform.node()
    ranks_nodes = comm.allgather((comm.Get_rank(), this_node))
    node2rankssofar = defaultdict(int)
    local_rank = None
    for (rank, node) in ranks_nodes:
        if rank == comm.Get_rank():
            local_rank = node2rankssofar[node]
        node2rankssofar[node] += 1
    assert local_rank is not None
    return local_rank, node2rankssofar[this_node]
def gpu_count()

Count the GPUs on this machine.

Expand source code
def gpu_count():
    """
    Count the GPUs on this machine.
    """
    if shutil.which('nvidia-smi') is None:
        return 0
    output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv'])
    return max(0, len(output.split(b'\n')) - 2)
def mpi_weighted_mean(comm, local_name2valcount)

Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean

Expand source code
def mpi_weighted_mean(comm, local_name2valcount):
    """
    Perform a weighted average over dicts that are each on a different node
    Input: local_name2valcount: dict mapping key -> (value, count)
    Returns: key -> mean
    """
    all_name2valcount = comm.gather(local_name2valcount)
    if comm.rank == 0:
        name2sum = defaultdict(float)
        name2count = defaultdict(float)
        for n2vc in all_name2valcount:
            for (name, (val, count)) in n2vc.items():
                try:
                    val = float(val)
                except ValueError:
                    if comm.rank == 0:
                        warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val))
                else:
                    name2sum[name] += val * count
                    name2count[name] += count
        return {name : name2sum[name] / name2count[name] for name in name2sum}
    else:
        return {}
def setup_mpi_gpus()

Set CUDA_VISIBLE_DEVICES to MPI rank if not already set

Expand source code
def setup_mpi_gpus():
    """
    Set CUDA_VISIBLE_DEVICES to MPI rank if not already set
    """
    if 'CUDA_VISIBLE_DEVICES' not in os.environ:
        if sys.platform == 'darwin': # This Assumes if you're on OSX you're just
            ids = []                 # doing a smoke test and don't want GPUs
        else:
            lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD)
            ids = [lrank]
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))
def share_file(comm, path)

Copies the file from rank 0 to all other ranks Puts it in the same place on all machines

Expand source code
def share_file(comm, path):
    """
    Copies the file from rank 0 to all other ranks
    Puts it in the same place on all machines
    """
    localrank, _ = get_local_rank_size(comm)
    if comm.Get_rank() == 0:
        with open(path, 'rb') as fh:
            data = fh.read()
        comm.bcast(data)
    else:
        data = comm.bcast(None)
        if localrank == 0:
            os.makedirs(os.path.dirname(path), exist_ok=True)
            with open(path, 'wb') as fh:
                fh.write(data)
    comm.Barrier()
def sync_from_root(sess, variables, comm=None)

Send the root node's parameters to every worker.

Arguments

sess: the TensorFlow session. variables: all parameter variables including optimizer's

Expand source code
def sync_from_root(sess, variables, comm=None):
    """
    Send the root node's parameters to every worker.
    Arguments:
      sess: the TensorFlow session.
      variables: all parameter variables including optimizer's
    """
    if comm is None: comm = MPI.COMM_WORLD
    import tensorflow as tf
    values = comm.bcast(sess.run(variables))
    sess.run([tf.assign(var, val)
        for (var, val) in zip(variables, values)])