Module TeachMyAgent.students.openai_baselines.common.tile_images

Expand source code
import numpy as np

def tile_images(img_nhwc):
    """
    Tile N images into one big PxQ image
    (P,Q) are chosen to be as close as possible, and if N
    is square, then P=Q.

    input: img_nhwc, list or array of images, ndim=4 once turned into array
        n = batch index, h = height, w = width, c = channel
    returns:
        bigim_HWc, ndarray with ndim=3
    """
    img_nhwc = np.asarray(img_nhwc)
    N, h, w, c = img_nhwc.shape
    H = int(np.ceil(np.sqrt(N)))
    W = int(np.ceil(float(N)/H))
    img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)])
    img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
    img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
    img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)
    return img_Hh_Ww_c

Functions

def tile_images(img_nhwc)

Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q.

input: img_nhwc, list or array of images, ndim=4 once turned into array n = batch index, h = height, w = width, c = channel returns: bigim_HWc, ndarray with ndim=3

Expand source code
def tile_images(img_nhwc):
    """
    Tile N images into one big PxQ image
    (P,Q) are chosen to be as close as possible, and if N
    is square, then P=Q.

    input: img_nhwc, list or array of images, ndim=4 once turned into array
        n = batch index, h = height, w = width, c = channel
    returns:
        bigim_HWc, ndarray with ndim=3
    """
    img_nhwc = np.asarray(img_nhwc)
    N, h, w, c = img_nhwc.shape
    H = int(np.ceil(np.sqrt(N)))
    W = int(np.ceil(float(N)/H))
    img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)])
    img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
    img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
    img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)
    return img_Hh_Ww_c