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Abstract

Autotelic Al algorithms, which pursue self-generated goals,
have proven to be effective as automated discovery assistants
in cellular automata (CAs). Previous work in this domain fo-
cused on algorithms which produce diverse behaviors by set-
ting the automaton’s initial conditions. Here, we extend these
methods beyond initial-condition search and adapt them to
systems that support sequences of closed-loop interventions.
Using Lenia as a test environment, we train goal-conditioned
reinforcement learning (RL) agents to perform targeted in-
terventions during the system’s evolution, guiding it towards
desired states. The resulting agent behaviors are robust and
diverse, demonstrating the potential of closed-loop interac-
tion for discovery and control. Furthermore, we show that
goal-conditioned RL agents performing interventions can dis-
cover novel self-organising patterns and generalize to previ-
ously unseen and noisy environments.

Companion website: developmentalsystems.org/rl-for-ca

Introduction

Cellular automata (CAs) have long been used as computa-
tional models in complex systems science, artificial life, and
the study of diverse real-world phenomena. Despite being
defined by simple local rules, they can generate remark-
ably rich and unexpected patterns. In artificial life, CAs
have been extensively used to study the questions of self-
replication, life, and open-ended evolution (Sayama and Ne-
haniv, 2025). Many CA systems are chaotic: they are highly
sensitive to initial conditions and external perturbations in-
troduced as the system evolves (). More recently, interest
in CAs has grown with the development of new expressive
models, such as Lenia and Flow-Lenia (Chan, 2018; Plantec
et al., 2025), which are continuous extensions of Conway’s
Game of Life that display lifelike behaviors, and neural cel-
lular automata (Mordvintsev et al., 2020), which incorporate
deep learning architectures and optimization methods into
the traditional CA framework.

For many years, researchers and hobbyists alike have
explored the vast space of possible CA configurations in
search of interesting patterns. Although this exploration tra-
ditionally relied on manual tuning and random search meth-
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Figure 1: Visualization of how goal-conditioned RL agents
can guide the CA grid towards some target state. This pro-
cess is repeated to form an episode.

ods (Wolfram, 2025), recent approaches have also used Al-
assisted automated discovery. Among these are autotelic di-
versity search methods, which generate a sequence of ex-
periments to explore the parameters of a dynamical sys-
tem by targeting a diversity of self-generated goals (Etchev-
erry, 2023). Lenia, in particular, has been a favored CA
testbed of automated discovery methods, which have un-
covered many novel, lifelike patterns (Hamon et al., 2024;
Etcheverry et al., 2020; Faldor and Cully, 2024; Kumar
etal., 2024).

To the best of our knowledge, all automated discovery
methods applied to CAs so far have been open-loop. In
such methods, the algorithm only specifies the initial state
of the automaton and observes the outcome after the full
rollout. Because CAs are inherently chaotic, the discov-
ered patterns are likely to be highly unstable. Furthermore,
open-loop methods do not intervene during rollout, which
restricts their usefulness for control problems, even though
CAs are frequently used to model real-world systems where
control is critical, such as epidemics and ecosystem dynam-
ics. This highlights the need for closed-loop discovery meth-
ods that can adjust the automaton’s state through targeted
interventions during its evolution. Such methods would en-
hance the expressiveness of the system, potentially enable
the discovery of more robust and diverse phenomena, and
open a new pathway towards applications in real-world con-
trol problems.

We propose a closed-loop approach for Al-driven scien-
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Figure 2: Example of post-training behavior. Adding and removing activations is denoted with red and white colors, respec-
tively. No cross indicates no action is taken. Top: an agent maintains the grid population by constantly removing activations in
order to prevent an exploding Turing pattern from forming. Bottom: an agent directs an Orbium towards a target direction.

tific discovery in CAs, consisting of autotelic reinforcement
learning (RL) agents that learn to directly perturb CA’s states
to achieve diverse targets. Although recent CA models have
occasionally been used as RL environments (Earle and To-
gelius, 2024; Sanchez-Fibla et al., 2024), and supervised
machine learning methods have guided neural CA pattern
growth (Sudhakaran et al., 2022), control and interactive Al-
assisted discovery remain largely unexplored.

Experiments

We present first experimental steps towards the larger project
of closed-loop Al-assisted discovery'. Specifically, we
conducted two experiments to investigate whether goal-
conditioned RL agents can make effective interventions to
guide the CA’s evolution to reach a desired state. At each
timestep, the agent observes the current grid state and the
goal embedding, then selects a location of the CA grid on
which to do an intervention, which is either adding or sub-
tracting an amount of activations within a fixed radius. The
grid then evolves for k CA steps, after which the agent re-
ceives a reward (see Fig. 1). This process repeats for IV
steps, constituting one episode, with predefined goals sam-
pled uniformly at the start of each episode. We use Lenia
as our testbed and train agents using double deep Q-learning
with a U-Net-like neural network architecture.

Controlling Grid Population

In the first experiment, we train an agent to maintain the to-
tal number of living cells on the grid at a target level. The
initial state contains a random number of activation clus-
ters. The reward is the mean absolute error between the
current grid sum and the sampled target value. For large
targets, the agent learns to add activations in a way that pro-
duces self-sustaining, growing Turing patterns. Intermediate
targets are handled by continuously reshaping the pattern,
while preventing a collapse or an explosion (top of Fig. 2).

"Experiment videos are available on the companion website.

For smaller targets, the agent learned to construct novel self-
sustaining patterns whose size is close to the target value.

Steering an Orbium

The second experiment investigates whether the agent can
direct an Orbium towards a target direction. The initial state
contains a single Orbium at a random location and orienta-
tion on a toroidal grid. The reward is based on the centroid
movement along a target direction. The action space addi-
tionally includes a do-nothing option, and actions that per-
turb the grid incur a small penalty, encouraging the agent
to leverage the CA’s intrinsic dynamics. After training, we
observe that the agent can steer an Orbium towards any tar-
get direction. During a typical episode, the agent first steers
the chaotic "non-Orbium’ configuration roughly toward the
target direction before discovering a state that naturally con-
verges into a properly oriented Orbium, after which it ceases
interventions and allows the pattern to move autonomously
(bottom of Fig. 2). We also observe that agents successfully
complete the task in noisy environments, where random per-
turbations are added to the grid between iterations.

Conclusion, Future Work

We have presented two experiments demonstrating that
goal-conditioned RL agents can perform targeted interven-
tions during Lenia’s evolution and guide it towards desired
states. While intervening, trained agents often create self-
sustaining patterns, showcasing their ability to discover and
exploit intrinsic dynamics of the complex system. More-
over, the agents generalize effectively to previously unseen,
noisy environments. Future experiments may explore other
environments, goal sampling within episodes, and automatic
curriculum learning. Overall, these results represent an en-
couraging step towards robust closed-loop Al-assisted scien-
tific discovery and control in complex systems, with promis-
ing potential for application to real-world systems.
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