Authors | Affiliation | Published |
---|---|---|
Mayalen Etcheverry | INRIA, Flowers team, Poietis | September, 2023 |
Clément Moulin-Frier | INRIA, Flowers team | |
Pierre-Yves Oudeyer | INRIA, Flowers team | |
Michael Levin | The Levin Lab, Tufts University | Reproduce in Notebook |
TL;DR
This second tutorial accompanies our paper Automated Discovery Tools Reveal Behavioral Competencies of Biological Networks, and more particularly the last section "Reuse of the framework as an alternative strategy to gene circuit engineering".
When simulating synthetic gene regulatory network, we typically assume one family of ODE equations. Here we use the transcriptional gene circuit model with a simple model step defined as:
$\frac{d{y}_i}{dt}=\phi \left({\sum}_j{W}_{ij}{y}_j+{B}_i\right)-{k}_i{y}_i$
Here, we use $k_i=1, W_{ij}\in[-30,30], B_{i}\in[-10,10]$ and with these parameters species concentrations are constrained in $y\in[0,1]$
@jit
def sigmoid(x):
return 1 / (1 + jnp.exp(-x))
class SimpleModelStep(eqx.Module):
def __init__(self, **kwargs):
super().__init__()
@jit
def __call__(self, y, w, c, t, deltaT):
n = len(y)
W = c[:n * n].reshape((n, n))
B = c[n * n:(n + 1) * n]
y_new = y + deltaT * (sigmoid(W @ y + B ) - y)
t_new = t + deltaT
w_new = w
return y_new, w_new, c, t_new
Now that we have define the new ModelStep function, AutoDiscJax allows us to simulate system rollout (and applying different kind of interventions on it) in the same manner that we did for biological networks in the first tutorial.
Let's instantitate the system rollout module.
n = 3 #number of nodes
deltaT = 0.01
n_secs = 100
n_steps = int(n_secs/deltaT)
c = jnp.empty(((n + 1) * n, ))
c_low = jnp.array([-30.]*n**2 + [-10.]*n)
c_high = jnp.array([30.]*n**2 + [10.]*n)
grn_step=SimpleModelStep()
y0=jnp.empty(shape=(n,))
y0_low = 0.
y0_high = 1.
w0 = jnp.array([])
system_rollout = grn.GRNRollout(n_steps=n_steps, y0=y0, w0=w0, c=c, t0=0.0, deltaT=deltaT, grn_step=grn_step)
Let's now use intervention to (randomly) set the GRN's init state (y0) and kinematic parameters (c)
# Create an intervention generator and an intervention_fn modules to set the initial state and the kinematic parameters to random values
random_intervention_generator_config = Dict()
random_intervention_generator_config.intervention_type = "set_uniform"
random_intervention_generator_config.controlled_intervals = [[0, deltaT/2.0]]
intervention_params_tree = DictTree()
intervention_params_low = DictTree()
intervention_params_high = DictTree()
for y_idx in range(len(y0)):
intervention_params_tree.y[y_idx] = "placeholder"
intervention_params_low.y[y_idx] = y0_low
intervention_params_high.y[y_idx] = y0_high
for c_idx in range(len(c)):
intervention_params_tree.c[c_idx] = "placeholder"
intervention_params_low.c[c_idx] = c_low[c_idx]
intervention_params_high.c[c_idx] = c_high[c_idx]
random_intervention_generator_config.out_treedef = jtu.tree_structure(intervention_params_tree)
random_intervention_generator_config.out_shape = jtu.tree_map(lambda _: (len(random_intervention_generator_config.controlled_intervals),), intervention_params_tree)
random_intervention_generator_config.out_dtype = jtu.tree_map(lambda _: jnp.float32, intervention_params_tree)
random_intervention_generator_config.low = intervention_params_low
random_intervention_generator_config.high = intervention_params_high
random_intervention_generator, intervention_fn = create_intervention_module(random_intervention_generator_config)
# example: generate a random set of intervention parameters between low and high
key, subkey = jrandom.split(key)
intervention_params, log_data = random_intervention_generator(subkey)
# Run the system with the sample intervention
key, subkey = jrandom.split(key)
random_system_outputs, log_data = system_rollout(subkey, intervention_fn=intervention_fn, intervention_params=intervention_params)
For the IMGEP goal space, we use the image space of the discrete fourier transform of the 1d-signal $y[n=0]$.
observed_node_ids = [0]
goal_embedding_encoder_config = Dict()
goal_embedding_encoder_config.encoder_type = "filter"
goal_embedding_tree = "placeholder"
goal_embedding_encoder_config.out_treedef = jtu.tree_structure(goal_embedding_tree)
goal_embedding_encoder_config.out_shape = jtu.tree_map(lambda _: (len(observed_node_ids)*(system_rollout.n_steps//2//2+1), ), goal_embedding_tree)
goal_embedding_encoder_config.out_dtype = jtu.tree_map(lambda _: jnp.float32, goal_embedding_tree)
goal_embedding_encoder_config.filter_fn = jtu.Partial(lambda system_outputs: jnp.fft.rfft(system_outputs.ys[observed_node_ids, -system_rollout.n_steps//2:]).flatten())
goal_embedding_encoder = create_goal_embedding_encoder_module(goal_embedding_encoder_config)
# example: encode system outputs
key, subkey = jrandom.split(key)
reached_goal_embedding, log_data = goal_embedding_encoder(subkey, random_system_outputs)
print(reached_goal_embedding.shape)
(2501,)
Distance in the goal space measures average difference in spectral amplitude.
goal_achievement_loss_config = Dict()
goal_achievement_loss_config.loss_type = "custom"
goal_achievement_loss_config.loss_f = jtu.Partial(lambda reached_goal, target_goal: abs(reached_goal - target_goal).mean())
goal_achievement_loss = create_goal_achievement_loss_module(goal_achievement_loss_config)
# example
target_goal_embedding = y_descriptors
key, subkey = jrandom.split(key)
gc_loss, log_data = goal_achievement_loss(subkey, reached_goal_embedding, target_goal_embedding)
print(gc_loss)
4.0033674
For the goal generator, goal-conditionned intervention selector and optimizer we re-use the same simple variants that the one used in the first tutorial.
goal_generator_config = DictTree()
goal_generator_config.out_treedef = goal_embedding_encoder_config.out_treedef
goal_generator_config.out_shape = goal_embedding_encoder_config.out_shape
goal_generator_config.out_dtype = goal_embedding_encoder_config.out_dtype
goal_generator_config.low = None
goal_generator_config.high = None
goal_generator_config.generator_type = "hypercube"
goal_generator_config.hypercube_scaling = 1.3
goal_generator = create_goal_generator_module(goal_generator_config)
# example
key, subkey = jrandom.split(key)
next_target_goal_embedding, log_data = goal_generator(subkey, target_goal_embedding[jnp.newaxis], jnp.stack([reached_goal_embedding,target_goal_embedding]))
print(next_target_goal_embedding.shape)
(2501,)
gc_intervention_selector_config = Dict()
gc_intervention_selector_config.selector_type = "nearest_neighbor"
gc_intervention_selector_config.loss_f = goal_achievement_loss.loss_f
gc_intervention_selector_config.k = 1
gc_intervention_selector = create_gc_intervention_selector_module(gc_intervention_selector_config)
# example
key, subkey = jrandom.split(key)
source_interventions_idx, log_data = gc_intervention_selector(subkey, next_target_goal_embedding, jnp.stack([reached_goal_embedding, target_goal_embedding]))
print(source_interventions_idx)
1
gc_intervention_optimizer_config = Dict()
gc_intervention_optimizer_config.out_treedef = random_intervention_generator.out_treedef
gc_intervention_optimizer_config.out_shape = random_intervention_generator.out_shape
gc_intervention_optimizer_config.out_dtype = random_intervention_generator.out_dtype
gc_intervention_optimizer_config.low = random_intervention_generator.low
gc_intervention_optimizer_config.high = random_intervention_generator.high
gc_intervention_optimizer_config.optimizer_type = "EA"
gc_intervention_optimizer_config.n_optim_steps = 1
gc_intervention_optimizer_config.n_workers = 1
gc_intervention_optimizer_config.init_noise_std = jtu.tree_map(lambda low, high: 0.1 * (high - low),
gc_intervention_optimizer_config.low, gc_intervention_optimizer_config.high)
gc_intervention_optimizer = create_gc_intervention_optimizer_module(gc_intervention_optimizer_config)
null_perturbation_generator, null_perturbation_fn = create_perturbation_module(Dict(perturbation_type="null"))
null_rollout_statistics_encoder = create_rollout_statistics_encoder_module(Dict(statistics_type="null"))
partial_gc_intervention_optimizer = jtu.Partial(gc_intervention_optimizer,
perturbation_generator=null_perturbation_generator, perturbation_fn=null_perturbation_fn,
intervention_fn=intervention_fn, system_rollout=system_rollout,
goal_embedding_encoder=goal_embedding_encoder, goal_achievement_loss=goal_achievement_loss,
rollout_statistics_encoder=null_rollout_statistics_encoder
)
# example
key, subkey = jrandom.split(key)
optimized_intervention_params, log_data = partial_gc_intervention_optimizer(subkey, intervention_params, next_target_goal_embedding, reached_goal_embedding)
print(jtu.tree_map(lambda node: node.shape, optimized_intervention_params))
{'c': {0: (1,), 1: (1,), 2: (1,), 3: (1,), 4: (1,), 5: (1,), 6: (1,), 7: (1,), 8: (1,), 9: (1,), 10: (1,), 11: (1,)}, 'y': {0: (1,), 1: (1,), 2: (1,)}}
Now that we have defined the IMGEP internal models, we can run the IMGEP experimental pipeline. As in the previous tutorial, we compare it with a random exploration strategy given the same experimental budget of experiments. Here we define a total of N=5000 experiments, with a batch size of 100.
jax_platform_name = "cpu"
seed = 0
# Run IMGEP
n_random_batches = 10
n_imgep_batches = 40
batch_size = 100
imgep_experiment_data_save_folder = "data/periodic_imgep_data"
if not os.path.exists(os.path.join(imgep_experiment_data_save_folder, "history.pickle")):
run_imgep_experiment(jax_platform_name, seed, n_random_batches, n_imgep_batches, batch_size,
imgep_experiment_data_save_folder,
random_intervention_generator, intervention_fn,
null_perturbation_generator, null_perturbation_fn,
system_rollout, null_rollout_statistics_encoder,
goal_generator, gc_intervention_selector, gc_intervention_optimizer,
goal_embedding_encoder, goal_achievement_loss,
out_sanity_check=False, save_modules=False, save_logs=False)
# Run Random Search
rs_experiment_data_save_folder = "data/periodic_rs_data"
if not os.path.exists(os.path.join(rs_experiment_data_save_folder, "history.pickle")):
run_rs_experiment(jax_platform_name, seed, n_random_batches+n_imgep_batches, batch_size,
rs_experiment_data_save_folder,
random_intervention_generator, intervention_fn,
null_perturbation_generator, null_perturbation_fn,
system_rollout, null_rollout_statistics_encoder,
out_sanity_check=False, save_modules=False, save_logs=False)
imgep_experiment_history = DictTree.load(os.path.join(imgep_experiment_data_save_folder, "history.pickle"))
imgep_reached_goals_embeddings = imgep_experiment_history.reached_goal_embedding_library
print(imgep_reached_goals_embeddings.shape)
rs_experiment_history = DictTree.load(os.path.join(rs_experiment_data_save_folder, "history.pickle"))
key, *subkeys = jrandom.split(key, num=len(imgep_reached_goals_embeddings)+ 1)
rs_reached_goals_embeddings, _ = vmap(goal_embedding_encoder)(jnp.array(subkeys), rs_experiment_history.system_output_library)
print(rs_reached_goals_embeddings.shape)
(5000, 2501) (5000, 2501)
rs_is_periodic_bool, rs_offset_vals, rs_ampl_vals, rs_freq_vals = is_periodic(rs_experiment_history.system_output_library.ys[:,0,:], jnp.r_[-system_rollout.n_steps//2:0], system_rollout.deltaT, 40)
rs_is_periodic_ids = jnp.where(rs_is_periodic_bool)[0]
print(f"Random Search has discovered {len(rs_is_periodic_ids)} oscillator circuits out of N={len(rs_is_periodic_bool)} trials")
imgep_is_periodic_bool, imgep_offset_vals, imgep_ampl_vals, imgep_freq_vals = is_periodic(imgep_experiment_history.system_output_library.ys[:,0,:], jnp.r_[-system_rollout.n_steps//2:0], system_rollout.deltaT, 40)
imgep_is_periodic_ids = jnp.where(imgep_is_periodic_bool)[0]
print(f"Curiosity Search has discovered {len(imgep_is_periodic_ids)} oscillator circuits out of N={len(imgep_is_periodic_bool)} trials")
Random Search has discovered 42 oscillator circuits out of N=5000 trials Curiosity Search has discovered 1167 oscillator circuits out of N=5000 trials
Here, the analytic BC space is the space of (amplitude $A$, main frequency $\omega$, offset $b$) of the discovered oscillators, where $(A,\omega,b)$ are estimated by Autodiscjax is_periodic
util function.
Diversity is measured with the QD-score, a binning-based metric where the BC space is discretized into a collection of bins and the diversity is quantified as the number of bins filled over the course of exploration.
We opt for a regular binning where each dimension of the BC space is discretized into equally sized bins, using 20 bins per dimension.
We do not use the threshold-coverage metric as in tutorial 1 as it is difficult to compute in n-dimensional spaces where $n\ge3$.
imgep_reached_goals_embeddings = jnp.stack([imgep_offset_vals.at[~imgep_is_periodic_bool].set(0.0),
imgep_ampl_vals.at[~imgep_is_periodic_bool].set(0.0),
imgep_freq_vals.at[~imgep_is_periodic_bool].set(0.0)], -1)
rs_reached_goals_embeddings = jnp.stack([rs_offset_vals.at[~rs_is_periodic_bool].set(0.0),
rs_ampl_vals.at[~rs_is_periodic_bool].set(0.0),
rs_freq_vals.at[~rs_is_periodic_bool].set(0.0)], -1)
analytic_bc_space_low = jnp.minimum(jnp.nanmin(imgep_reached_goals_embeddings, 0), jnp.nanmin(rs_reached_goals_embeddings, 0))
analytic_bc_space_high = jnp.maximum(jnp.nanmax(imgep_reached_goals_embeddings, 0), jnp.nanmax(rs_reached_goals_embeddings, 0))
analytic_bc_space_extent = jnp.stack([analytic_bc_space_low, analytic_bc_space_high]).transpose()
def calc_analytic_bc_coverage_histograms(reached_goals_embeddings, analytic_bc_space_extent, n_bins=20, every_n_steps=1):
def f(carry, goal_embedding):
Hf = carry
cur_Hf, _ = jnp.histogramdd(goal_embedding[jnp.newaxis], bins=n_bins,range=analytic_bc_space_extent)
Hf = Hf + cur_Hf.transpose()
return Hf, Hf
final_coverage_histogram, coverage_histograms = lax.scan(f, jnp.zeros((n_bins, n_bins, n_bins), dtype=jnp.int32), reached_goals_embeddings[::every_n_steps])
return coverage_histograms
imgep_coverage_histograms = calc_analytic_bc_coverage_histograms(imgep_reached_goals_embeddings, analytic_bc_space_extent, n_bins=20)
rs_coverage_histograms = calc_analytic_bc_coverage_histograms(rs_reached_goals_embeddings, analytic_bc_space_extent, n_bins=20)
👉 We can see that, one again, curiosity search is much more efficient than random search in revealing a diversity of possible oscillator behaviors. Given the same experimental budget of 5000 model rollouts, random search was able to find only 42 configurations leading to periodic patterns whereas curiosity search was able to find 1167. Projecting the discoveries into the space of (amplitude, frequency, offset), we can see that curiosity search efficiently reveals and covers the reachable space (a-c), reaching hard-to-discover behaviors on the borders of the space (d-i).
In Tom W. Hiscock's paper, it is showcased how the use of gradient descent-based optimization can be helpful to design (synthetic) gene circuits with desired functionalities, and the example of optimizing the transcriptional gene circuit parameters to generate oscillations with desired (amplitude $A$, main frequency $\omega$) is considered. In the paper, the loss function is defined as $C = \sum_t(y_i(t) - (A \cos(2\pi\omega t)+b))^2$ where $y_i$ is the observed node (here i=0). Adam optimizer is then used with parameters $lr = 0.1, b1 = 0.02, b2 = 0.001$. Here we use the same parameters except for the learning rate that is chosen as $lr=1e-3$ (0.1 too big here). Note that $b$ is not optimized in the original paper and considered fixed as $b=0$ but this leads to biologically not-admissible target with negative gene expression levels. Here, we consider targets respecting the plausible gene expression levels $0 \le y \le 1$ in the gene circuit model. We define $A \in [0.1,05],b \in [A,1-A], w \in [0,1]$.
# Model Rollout
class ModelRollout(eqx.Module):
deltaT: float
y0: Array
c: Array
grn_step: SimpleModelStep
def __init__(self, deltaT, y0, c, grn_step):
super().__init__()
self.deltaT = deltaT
self.y0 = jnp.maximum(y0, 0.)
self.c = c
self.grn_step = grn_step
@partial(jit, static_argnames=("n_steps",))
def __call__(self, n_steps):
def f(carry, x):
y, w, c, t = carry
return self.grn_step(y, w, c, t, self.deltaT), (y, w, t)
(y, w, c, t), (ys, ws, ts) = lax.scan(f, (self.y0, jnp.array([]), self.c, 0.0), jnp.arange(n_steps))
ys = jnp.moveaxis(ys, 0, -1)
ws = jnp.moveaxis(ws, 0, -1)
return ys, ws, ts
def loss_pattern(ys, A, b, w):
target_ys = A*jnp.cos(2*jnp.pi*w*random_system_outputs.ts)+b
loss = jnp.sqrt(jnp.square(ys-target_ys).sum())
return loss
We use Adam optimizer as in Hiscock et al [1], and define the functions loss_fn
and make_step
for the optax pipeline.
# Optax optimizer, loss function and update function
optim = optax.adam(1e-3, b1=0.02, b2=0.001) # Same optimizer params than in Hiscock et al.
@jit
def loss_fn(params, A, b, w):
"""loss function"""
y0, c = params
model = ModelRollout(deltaT, y0, c, SimpleModelStep())
ys, ws, ts = model(n_steps)
loss = loss_pattern(ys[0], A, b, w)
return loss
@jit
def make_step(params, A, b, w, opt_state):
"""update function"""
loss, grads = value_and_grad(loss_fn)(params, A, b, w)
updates, opt_state = optim.update(grads, opt_state)
params = optax.apply_updates(params, updates)
return loss, params, opt_state
We also compare with an evolutionary search strategy known as CMA-ES which is supposed to be self-adaptive in the self-size, and often used for optimization problems.
The CMA-ES code we use is taken from the evojax library, and we refer the reader to their original codebase available at: https://github.com/google/evojax/blob/main/evojax/algo/cma_jax.py.
For the fitness evaluation, we simply use the negative of the previously-defined loss.
We consider 3 setups: 1. Giving gradient-descent a budget of N=5000 optimization steps (same number of model rollouts allowed than for curiosity search and random search) and starting from random init $y_0 \in [0,1]^{n}, W \in [-30,30]^{n \times n}, B \in[-10,10]^{n}$ 2. Giving CMA-ES a budget of N=5000 optimization steps (same number of model rollouts allowed than for curiosity search and random search) and starting from random init $y_0 \in [0,1]^{n}, W \in [-30,30]^{n \times n}, B \in[-10,10]^{n}$ 2. Giving gradient-descent a budget of N=100 optimization steps and starting from the best discoveries made by the curiosity search and random search exploration strategies (small budget this time, for local refinement).
# Generate RANDOM Target
A = jrandom.uniform(subkey, minval=0.1, maxval=0.5)
key, subkey = jrandom.split(key)
w = jrandom.beta(subkey, a=2, b=8)
key, subkey = jrandom.split(key)
b = jrandom.uniform(subkey, minval=A, maxval=1-A)
# Optax pipeline from RANDOM Init
key, subkey = jrandom.split(key)
y0_sgd = jrandom.uniform(subkey, shape=(n, ), minval=y0_low, maxval=y0_high)
key, subkey = jrandom.split(key)
c_sgd = jrandom.uniform(subkey, shape=(n**2+n, ), minval=c_low, maxval=c_high)
model = ModelRollout(deltaT, y0_sgd, c_sgd, SimpleModelStep())
ys_random, _, _ = model(n_steps)
n_optim_steps = 5000
opt_state = optim.init((y0_sgd, c_sgd))
loss_sgd = []
n_sgd_oscillators = 0
for optim_step_idx in range(n_optim_steps):
loss, (y0_sgd, c_sgd), opt_state = make_step((y0_sgd, c_sgd), A, b, w, opt_state)
loss_sgd.append(loss)
# check whether gradient descent passes through some oscillator behaviors
model = ModelRollout(deltaT, y0_sgd, c_sgd, SimpleModelStep())
ys_sgd, _, _ = model(n_steps)
is_periodic_bool, _, _, _ = is_periodic(ys_sgd[0,:], jnp.r_[-system_rollout.n_steps//2:0], deltaT, 40)
n_sgd_oscillators += int(is_periodic_bool)
print(f"Gradient-descent optimization has discovered {n_sgd_oscillators} oscillator circuits out of N={n_optim_steps} trials")
# Optax pipeline from closest init in IMGEP discoveries
loss_imgep = vmap(loss_pattern, in_axes=(0,None,None,None))(imgep_experiment_history.system_output_library.ys[:,0], A, b, w)
imgep_best_idx = imgep_is_periodic_ids[loss_imgep[imgep_is_periodic_ids].argmin()]
y0_imgep = jnp.array([imgep_experiment_history.intervention_params_library.y[node_idx][imgep_best_idx, 0] for node_idx in range(n)])
c_imgep = jnp.array([imgep_experiment_history.intervention_params_library.c[param_idx][imgep_best_idx, 0] for param_idx in range(n**2+n)])
model = ModelRollout(deltaT, y0_imgep, c_imgep, SimpleModelStep())
ys_imgep, _, _ = model(n_steps)
n_optim_steps = 100
opt_state = optim.init((y0_imgep, c_imgep))
loss_imgep_sgd = []
for optim_step_idx in range(n_optim_steps):
loss, (y0_imgep, c_imgep), opt_state = make_step((y0_imgep, c_imgep), A, b, w, opt_state)
loss_imgep_sgd.append(loss)
model = ModelRollout(deltaT, y0_imgep, c_imgep, SimpleModelStep())
ys_imgep_sgd, _, _ = model(n_steps)
## arrange loss prior optim for plotting
cur_min = loss_imgep[0]
for i, cur_loss in enumerate(loss_imgep):
if cur_loss > cur_min:
loss_imgep = loss_imgep.at[i].set(cur_min)
else:
cur_min = cur_loss
# Optax pipeline from closest init in RS discoveries
loss_rs = vmap(loss_pattern, in_axes=(0,None,None,None))(rs_experiment_history.system_output_library.ys[:,0], A, b, w)
rs_best_idx = rs_is_periodic_ids[loss_rs[rs_is_periodic_ids].argmin()]
y0_rs = jnp.array([rs_experiment_history.intervention_params_library.y[node_idx][rs_best_idx, 0] for node_idx in range(n)])
c_rs = jnp.array([rs_experiment_history.intervention_params_library.c[param_idx][rs_best_idx, 0] for param_idx in range(n**2+n)])
model = ModelRollout(deltaT, y0_rs, c_rs, SimpleModelStep())
ys_rs, _, _ = model(n_steps)
n_optim_steps = 100
opt_state = optim.init((y0_rs, c_rs))
loss_rs_sgd = []
for optim_step_idx in range(n_optim_steps):
loss, (y0_rs, c_rs), opt_state = make_step((y0_rs, c_rs), A, b, w, opt_state)
loss_rs_sgd.append(loss)
model = ModelRollout(deltaT, y0_rs, c_rs, SimpleModelStep())
ys_rs_sgd, _, _ = model(n_steps)
## arrange random search loss prior optim for plotting
cur_min = loss_rs[0]
for i, cur_loss in enumerate(loss_rs):
if cur_loss > cur_min:
loss_rs = loss_rs.at[i].set(cur_min)
else:
cur_min = cur_loss
# CMA-ES pipeline from RANDOM Inits
key, subkey = jrandom.split(key)
y0_cma = jrandom.uniform(subkey, shape=(n, ), minval=y0_low, maxval=y0_high)
key, subkey = jrandom.split(key)
c_cma = jrandom.uniform(subkey, shape=(n**2+n, ), minval=c_low, maxval=c_high)
solver = CMA_ES_JAX(param_size=15, mean=jnp.concatenate([y0_sgd, c_cma]), init_stdev=2, seed=0)
n_optim_steps = int(jnp.ceil(5000 / solver.pop_size).item())
loss_cma = []
n_cma_oscillators = 0
for optim_step_idx in range(n_optim_steps):
params = solver.ask()
y0_cma = params[:, :3]
c_cma = params[:, 3:]
losses = vmap(loss_fn, (0, None, None, None))((y0_cma, c_cma), A, b, w)
solver.tell(-losses)
loss_cma += losses.tolist()
# check whether gradient descent passes through some oscillator behaviors
for cur_y0_cma, cur_c_cma in zip(y0_cma, c_cma):
model = ModelRollout(deltaT, cur_y0_cma, cur_c_cma, SimpleModelStep())
ys_cma, _, _ = model(n_steps)
is_periodic_bool, _, _, _ = is_periodic(ys_cma[0,:], jnp.r_[-system_rollout.n_steps//2:0], deltaT, 40)
n_cma_oscillators += int(is_periodic_bool)
print(f"CMA-ES optimization has discovered {n_cma_oscillators} oscillator circuits out of N={n_optim_steps} trials")
y0_cma = solver.best_params[:3]
c_cma = solver.best_params[3:]
model = ModelRollout(deltaT, y0_cma, c_cma, SimpleModelStep())
ys_cma, _, _ = model(n_steps)
Gradient-descent optimization has discovered 0 oscillator circuits out of N=5000 trials CMA-ES optimization has discovered 1 oscillator circuits out of N=417 trials
👉 We can see that gradient descent alone fails to discover an oscillator in this example, as it get trap in a strong local minima (constant signal with same average than the target oscillator). This shows the challenge of finding a proper loss and/or parameter initialization. While CMA-ES has a more exploratory behavior at the beginning, it also get stucks in a similar local minima than gradient descent, showcasing the limitations of pure optimization-driven strategies failing to properly explore the space of solutions.
However, we found that optimization strategies can be useful for locally finetuning "close-enough" discoveries, such as the ones discovered by the curiosity search and/or random search. Note that in this example, curiosity search reaches a better solution than random search and in a more efficient way with (N=1057+100, L=13.97) versus (N=2663+100, L=22.92) for random search.